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The hydromagnetic mixed convection flow through a porous medium in a pipe of varying radius in a uniform
axial magnetic field is analyzed. The pipe wall is maintained at a prescribed nonuniform temperature. The
governing equations are solved analytically to obtain the velocity, temperature, and induced magnetic field.
Their behaviors are evaluated for different variations in the governing parameters.

Introduction. During the last few decades, heat transfer in magnetic hydrodynamics (MHD) has been devel-
oped extensively under the combined stimuli of advances in geophysics and astrophysics. Most analytical works in
MHD lead to either exact or approximate solution for unidirectional or two-dimensional channel flows in closed or se-
ries form. The channel may be partially bound and the disturbance is created due to thermal buoyancy. Several authors
have worked in the above domains of MHD [1—5, 8, 9]. In the geothermal region, gases are electrically conducting,
which is why they are affected by a magnetic field. The magnetothermal dynamics phenomenon in a porous medium
results from the influence of a magnetic field on a conducting fluid flowing through the medium. Examination of the
flow model reveals the combined influence of porosity and a magnetic field on the velocity and temperature profiles
as well as on the local heat transfer. Reddy has discussed the effect of a magnetic field on the convective flow of an
incompressible, viscous, electrically conducting fluid for different configurations of the pipe [10].

Convection flow through a channel of varying cross section creates a secondary flow which is of great im-
portance to technological processes. In the hydromagnetic case, a flow through a channel with varying cross section
has been considered by McMichael and Deutsch [6]. Here, the onset of flow separation is shown to be associated
with adverse axial gradients of wall pressure created by radial magnetic forces. Those are produced by electric cur-
rents induced first of all by the zero-order streamlines crossing the uniform field, and large radial pressure gradients
are obviously developed. Recently, Murthy has extended this problem to study the effects of a uniform axial mag-
netic field [7].

In this paper, we analyze the magnetohydrodynamic mixed convection flow through a porous medium in a
pipe of varying radius in a uniform axial magnetic field. The pipe wall is maintained at a prescribed nonuniform tem-
perature. The velocity, temperature, and induced field have axial and radial components, while the current density is
characterized by an azimuthal component only. The components of the induced magnetic field are ultimately deter-
mined by matching conditions for the internal and external fields on the boundary. The behaviors of the velocity, tem-
perature, and induced magnetic field obtained analytically are discussed and the corresponding profiles are presented
for different sets of the governing parameters. The shear stress and the Nusselt number values are obtained.

Formulation and Solution of the Problem. We consider a steady axisymmetric flow of an incompressible,
viscous, electrically conducting fluid through a porous medium in a vertical pipe of slowly varying cross section main-
tained at nonuniform temperature γ (δx ′ ⁄ a). The Boussinesq approximation is used; thus the density variations will be
retained only in the buoyancy force. The viscous dissipation is neglected in comparison to the heat flow by convec-
tion. The cylindrical polar system O(r, x) is chosen with the x-axis along the axis of the pipe. The boundary of the
pipe is assumed to be

r ′ = af (δx ′ ⁄ a) ,
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where a is the characteristic radius, f is a twice-differentiable function, and δ is a small parameter proportional to the
boundary slope. The flow is maintained at a constant volume flow rate Qv for which the characteristic velocity U is
defined as

 U = Qv
 ⁄ a

2
 . (1)

The applied magnetic field of induction B ′ is uniform and directed along the pipe axis. No electric field is
applied and there is no induced electric field for the constraints given in [6]. The electrical conductivity of the pipe
walls remains arbitrary and does not influence the fluid dynamics. We use the following nondimensional quantities:

∆Te = Qa
2 ⁄ λ ,   θ = (T − Te) ⁄ ∆Te ,   ζ = ζ ′a ⁄ U ,

x = x ′ ⁄ a ,   r = r ′ ⁄ a ,   q = q ′ ⁄ U ,   p = p ′ ⁄ (ρU
2) ,   B = B′ ⁄ B0 ,   J = J ′ ⁄ (σUB0) .

Then the governing equations of the flow are

 R [ζ × q + ∇ (p + q
2 ⁄ 2)] = ∇2

q − σ1
2
q + M

2
 J × B − 

G
R

 θ 
g
g

 , (2)

∇⋅q = 0 , (3)

Pe (q⋅∇) θ = θrr + (1 ⁄ r) θr + θxx + 1 , (4)

∇⋅B = 0 , (5)

∇ × B = RmJ , (6)

J = q × B , (7)

where

R = Uaρ ⁄ µ ,   Rm = σµ0Ua ,   M = aB0 (σ ⁄ µ)
1 ⁄ 2 ,

Gr = βg∆Teρ
2
a

3 ⁄ µ
2
 ,   G = Gr 

∆Te

∆Te
 ,   Pe = aρcpU ⁄ λ ,   σ1

2
 = a

2 ⁄ k ,

and the subscripts r and x denote the respective partial derivatives. Under the constraints imposed, J has only the az-
imuthal component Jθ while q and B have axial and radial components:

q = (u, v) ,   B = (f1, f2) .

The boundary conditions relevant to the problem are

v (r, x) = 0 ,   
∂v

∂r
 = 0 ,   

∂T

∂r
 = 0   at   r = 0 ;

u (r, x) = 0 ,   T − Te = γ (δx)   at   r = f .
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 Equations (2)—(7) constitute a system of six equations for six unknowns u, v, f1, f2, Jθ, and θ. They can be
reduced to the equations for the Stokes stream function ψ (x, r) and the magnetic stream function φ(x, r) which are
introduced in the following way:

u = − (1 ⁄ r) ψr ,   v = (1 ⁄ r) ψx ; (8)

f1 = − (1 ⁄ r) φr ,   f2 = (1 ⁄ r) φx . (9)

Combining (7) and (8) to eliminate J, we find

E
2φ = Rm (1 ⁄ r) (ψxφr − ψxφr) , (10)

where the operator E2 is defined as

E
2
 = r 

∂

∂r
 



(1 ⁄ r) 

∂

∂r




 + 

∂2

∂x
2 .

Substituting (7) into (2) and taking the curl of the latter to eliminate the pressure, we have

R [(1 ⁄ r) ψx (E
2ψ)r − (1 ⁄ r) ψr (E

2ψ)x − (2 ⁄ r
2) ψxE

2ψ] =

= E
4ψ + (M2 ⁄ Rm) [(1 ⁄ r) φx (E

2φ)r − (1 ⁄ r) φr (E
2φ)x − (2 ⁄ r

2) φxE
2φ] -

− (G ⁄ R) r 
∂θ
∂r

 − σ1
2
E

2ψ . (11)

The energy equation is

Pe (θrψx − θxψr) = θrr + (1 ⁄ r) θr + θxx + 1 . (12)

The current density can be found from Eq. (7), which reduces to

 Jθ = (1 ⁄ r
2) (ψxφr − ψrφx) . (13)

The coupled equations (11)—(13) are to be solved under the boundary conditions

 ψ (r, x) = 0 ,   
∂
∂r

 



(1 ⁄ r) 

∂ψ
∂r



 = 0 ,   

∂θ
∂r

 = 0   at   r = 0 ; (14)

ψ (r, x) = − 1 ⁄ 2 ,   
∂ψ
∂r

 = 0 ,   θ (r, x) = γ (δx)   at   r = f . (15)

Hence the function ψ is that which assures a constant volumetric flow, in accord with (1), and the axial symmetry of
the flow, according to conditions (14).

Electric currents within the fluid induce a magnetic field exterior to the pipe as well as within it. This exter-
nal field B

^
 = (f^1, f

^
2) is given by a potential A

^
 = φ^eθ, where eθ is the unit vector in the direction θ, so that

B
^

 = ∇ × A
^

or
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f
^
1 = − (1 ⁄ r) φ^r ,   f

^
2 = (1 ⁄ r) φ^x .

Since Rm = 0 in the exterior region, Eq. (10) reduces to

E
2φ^ = 0 . (16)

Both the potential and the field itself must be continuous on the wall (at r = f(x)) [11]. Thus, we can write the fol-
lowing matching conditions:

φ = φ^ ,   φr = φ^r   at   r = f (x) .

Following [6], we introduce the transformation

x = δx ,   η = r ⁄ f (x) .

Solutions of the equations obtained are derived by perturbation analysis and are expressed through the modified Bessel
functions.

Further we write the expressions for the stress tensor and the Nusselt number for the motion in the pipe. For
example, the stress tensor is of the form

σij = − pδij + 2µeij ,

where

exx = 
∂u

∂x
 ,   err = 

∂v

∂r
 ,   erx = 

1
2

 




∂u

∂r
 + 
∂v

∂x




 .

The shear stress on the pipe wall at r = f(x) in dimensional form is given as

τ = σrx (1 − f ′
2

) + (σrr − σxx) f
 ′ (1 + f ′

2

) .

On the basis of the expressions for the shear stress and the Nusselt number, we can obtain the values of these char-
acteristics for different sets of the governing parameters.

Results and Discussion. The velocity, temperature, shear stress, and Nusselt number for the pipe with varying
radius are analytically evaluated and their behaviors with variations in the governing parameters G, R, σ1, and β1 are
analyzed numerically. For computational purposes, the geometry of the pipe wall in the nondimensional form is as-
sumed to be expressed as r = f (x

_
) = 1 + β1 exp (−x

_
2) and the prescribed wall temperature γ(x

_
) is chosen to be α sin x

_
.

The cases of β1 > 0 and β1 < 0 correspond to the divergent and convergent pipe respectively. When the  equilibrium
temperature on the boundary is less than the actual temperature, G is positive; otherwise G is negative. The magnetic
Reynolds number Rm is chosen to be O(1) so that the induced magnetic field cannot be neglected in comparison to
the applied field and thus influences the flow to some extent. In view of the magnetic flux condition, the current den-
sity vector J can be expressed in terms of the magnetic stream function φ and hence the governing equations are the
coupled equations involving ψ, φ, and θ. Figures 1—4 give the profiles of u and v for different parametric values in
both divergent and convergent pipes. It is of interest to note that the geometry of the boundary directly influences the
occurrence of the convection cells. The porosity of the medium also affects the appearance of the reversal flows.

We see from Fig. 1a that, when a pipe is divergent, the axial flow is positive and hence no reversal flow oc-
curs for G ≤ 5⋅103. For G ≥ 104, the reversal flow appears near the axis for G > 0 and near the boundary for
G < 0. However,  in a convergent pipe the reversal flow is absent in the entire domain for all G (Fig. 1c). When
G > 0, the magnitude of u decreases near the axis with increase in G for a divergent pipe (but for G ≥ 104, when u is
negative, u increases) and at intermediate values of η for a convergent pipe (Fig. 1a and c). A reversed dependence
is observed for G < 0.
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Figure 1b shows that the secondary velocity v in a divergent pipe is directed towards the axis for positive G
(when G ≤ 104) and towards the boundary for negative G. We note that the magnitude of v increases with G for all
positive and negative G. In a convergent pipe, v is directed towards the boundary for all G except G ≥ 104 (Fig. 1d).
Here, v decreases with increasing G when G > 0 and increases with G when G < 0.

The values of u and v increase with R in the middle part of the channel, i.e., near the axis (Figs. 2a—d) and
predominantly decrease in the remaining part adjacent to the boundary for all β1 (Fig. 2a, c, and d). The value of u in
the divergent pipe decreases with increasing σ1 (i.e., with decreasing permeability) in both divergent and convergent
pipes (Fig. 3a and c). It is of interest to see in Fig. 3a that for σ1 = 10, the reversal flow appears near the axis even at
the value of G = 2⋅103, confirming that the appearance of convection cells depends highly on the porosity of the me-
dium. We conclude that when the permeability of the medium is small, convection cells can appear even at smaller
positive values of G in contrast to the case of larger permeability. The secondary flow exhibits different behavior for
various geometries with variation in the porosity parameter. The value of v in a divergent pipe decreases with in-
crease in σ1 (Fig. 3a), whereas in a convergent pipe it increases near the axis only (Fig. 3d). Figures 4a and b presents
the profiles of u and v depending on the amplitude β1. The surprising thing is that both u and v increase with
β1 in both divergent and convergent pipes.

Fig. 1. Profiles of the axial (a and c) and radial (b and d) velocities for R =
50, α = 2, σ1 = 2 at β1 = 0.5 (a and b) and β1 = −0.5 (c and d) with different
values of G:  1) G = 103; 2) 3⋅103; 3) 5⋅103; 4) 104; 5) 2⋅104; 6) –103; 7)
−3⋅103; 8) –5⋅103; 9) –104; 10) –2⋅104.
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Fig. 2. Profiles of the axial (a and c) and radial (b and d) velocities for
G = 2⋅103, α = 2 at β1 = 0.5 (a and b) and β1 = −0.5 (c and d) with different
values of R: 1) R = 50; 2) 100; 3) 200.

Fig. 3. Profiles of the axial (a and c) and radial (b and d) velocities for R =
50, G = 2⋅103 at β1 = 0.5 (a and b) and β1 = −0.5 (c and d) with different val-
ues of σ1: 1) σ1 = 1; 2) 5; 3) 10.

732



The temperature profiles for variations in G, β1, α, and σ1 are plotted in Figs. 5–8. It is seen from Fig. 5a
and b that in both divergent and convergent pipes the temperature increases with G when G > 0 and decreases with
increasing G when G is negative (except for curve 5 in Fig. 5b). We also note that the greater the divergence and
the less the convergence, the higher the temperature in the flow field over the whole cross section (Fig. 6). The tem-
perature also increases with the amplitude of the wall-temperature distribution for G > 0 (Fig. 7) as well as with the
porosity parameter in either of the pipe configurations (Fig. 8).

Fig. 4. Profiles of the axial (a) and radial (b) velocities for R = 50, G = 2⋅103,
and  σ1 = 2 with different values of β1: 1) β1 = 0.5; 2) 0.3; 3) 0.1; 4) –0.1; 5) –0.3;
6) –0.5.

Fig. 5. Temperature profiles for R = 50, σ1 = 2, and β1 = 0.5 (a) and –0.5 (b)
with different values of G: 1) G = 103; 2) 3⋅103; 3) 5⋅103; 4) 104; 5) 2⋅104;
6) –103; 7) –3⋅103; 8) –5⋅103.

Fig. 6. Temperature profiles for R = 50, σ1 = 2, and G = 2⋅103 with different
values of β1: 1) β1 = 0.1; 2) 0.3; 3) 0.5; 4) –0.1; 5) –0.3; 6) –0.5.

Fig. 7. Temperature profiles for R = 50, σ1 = 2, G = 2⋅103, and β1 = 0.5 with
different values of α: 1) α = 0.5; 2) 1.5; 3) 2.5.
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As to shear stresses on the pipe, they are positive for G > 0 and in most cases are negative for G < 0. The
value of stress increases with G for G > 0. An increase in R decreases τ for positive G and increases it for G < 0 (ex-
cept for value at negative G with G of the order of 104, where the reversal flow appears). Irrespective of the sign
of the amplitude β1, an increase in β1 leads to a decrease in τ. The stress increases in magnitude with the po-
rosity parameter σ1.

The average Nusselt number in general is negative except for certain cases of a convergent pipe for G < 0.
These negative values of Nu imply that the temperature reaches its minimum in the vicinity of the wall before a rise
to the prescribed value on the wall. We see that, all other parameters being equal, Nu increases with G in both
divergent and convergent pipes. Moreover , for G > 0  the value of Nu in a convergent pipe is much greater than
in a divergent one, once again confirming that the heat transport in the first case is much more efficient. However,
this situation gets reversed for smaller negative values of G when G < 104. An increase in β1 in both pipes in-
creases Nu for larger G. As the permeability of the medium reduces, the value of Nu becomes lower. We note
that Nu decreases with increasing σ1. For the most part, the wall-temperature parameter α does not affect the values
of both stress and Nu.

CONCLUSIONS

1. The geometry of the boundary directly influences the occurrence of the convection cells. When
G > 104 for a divergent pipe, the reversal flow occurs near the axis at positive G and near the boundary at negative
G. In a convergent pipe, the reversal flow is absent.

2. The magnitude of the secondary velocity v decreases with G. The porosity parameter affects the appear-
ance of the reversal flow. When the permeability of the medium is small, convection cells can appear even at smaller
values of G in contrast to the case of large permeability of the medium.

3. The velocity rises with increase in both convergence and divergence.
4. The temperature increases with G when G > 0 and decreases with increasing G when G is negative. The

greater the divergence and the less the convergence, the higher the temperature in the flow field over the whole sec-
tion.

5. The rate of heat transfer Nu increases with G for both configurations.
6. For G > 0, the heat transport in a convergent pipe is much more efficient compared to a divergent one.

NOTATION

a, characteristic radius of the tube; B, magnetic induction; cp, specific heat at constant pressure; f, nondimen-
sional radius of the pipe; f1 and f2, components of magnetic induction; Gr, Grashof number; G, parameter connected
with Gr; g, acceleration due to gravity; J, current density; k, permeability coefficient; M, Hartmann number; Nu,

Fig. 8. Temperature profiles for R = 50 and G = 2⋅103 with different values of
σ1 and β1: 1) σ1 = 1 and β1 = 0.5; 2) 2 and 0.5; 3) 3 and 0.5; 4) 1 and –0.5;
5) 2 and –0.5; 6) 3 and –0.5.
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Nusselt number; p, pressure; Pe, Peclet number; Q, external heat source; Qv, flow rate; q, velocity; R, Reynolds num-
ber; Rm, magnetic Reynolds number; r, radius of the pipe; T, temperature; U, characteristic velocity; u and v, nondi-
mensional axial and radial components of velocity; x and r, axial and radial coordinates; α, wall temperature parameter;
β, coefficient of volume expansion; β1, pipe-radius parameter; γ, nondimensional boundary temperature; δ, small pa-
rameter; ξ, vorticity; θ, nondimensional temperature; λ, thermal conductivity; µ, viscosity; µ0, magnetic permeability;
ρ, density of the fluid; σ, stress tensor; σ, electrical conductivity; σ1, porosity parameter; τ, shear stress;  φ, magnetic
stream function; ψ, Stokes stream function. Subscripts and superscripts: e, equilibrium; 0, characteristic value; ′, di-
mensional quantity;  ̂ , external field.
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